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PREFACE

The purpose of this document is to describe the evaluation of a
maximum likelihood classification procedure for detecting and locating
surface water using data from the multispectral scanner (MSS) on the
Earth Resources Technology Satellite (ERTS-1), this activity was under-
taken to support implementation of Federal legislation requiring the
inventory of impoundments.

This document includes background information on why the valua-
tion was conducted; a statement of the problem; a detailed dcscription
of the technical approach used; a statement of the performance results;
and recommendations as to the most appropriate procedure to evaluate
next.

This document was prepared pursuant to requirements identified
with the Applications Office of the Earth Observation Division. It is
comprised of a joint effort of personnel within the Earth Observations
Division and personnel within the Earth Resources Department, Lockheed
Electronics Company, Inc. Prime technical contribution to the effort
described herein was made by T. C. Minter, scientific programming
analyst. Activities by the contractor were authorized under contract
NAS 9-12200.
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MSS
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The National Program for the Inspection of Dams
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1.0 SUMMARY

In this document, ¢ description is presented of the results from
a detailed evaluation of a computer-aided procedure for processing
ERI'S-1 data to detect and locate surface water for the National Pro-
gram for the Inspection of Dams (NPID). The procedure was evaluated
using data from a study area in the vicinity of the Lake Somerville
area in Washington County, Texas.

The procedure evaluated consisted of (1) selecting water training
fields, (2) aggregating the training samples together and clustering
them into unimodal clusters, (3) computing the mean vector and covari-
ance matrix for each cluster, (4) classifying all of the study area
into classes corresponding to the clusters using the maximum likelihood

classifier, and (5) thresholding out the non-water pixels.1

Water training fields were selected from the ERTS-1 multispectral
digital image without the aid of ground truth using a grey map of
channel 4, This constraint and associated rationale are discussed in
detail.

The result of the evaluation was that the use of the procedure
failed to provide acceptable performance results. The success criteria
established for this study was that 90% of all areas of surface water
of 10 acres or more had to be correctly identified and located with a
frequency of false detection of 10% ot less. The result from the pro-
cedure evaluation was that 100% of all areas of surface wuter of 10
acres or more were correctly detected, but the frequency of false
detection was approximately 96.8%.

1 pixel is the basic unit in image reconstruction .‘rom the digi-

tal tape, using electronic display devices. It is the binary integer
recorded on magnetic tape that represents a time sample of the analog
scan line trace, the value of which is proportionzl to the energy
sensed by each ERTS-1 MSS channel.
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It was concluded from this evaluation that two principal sources
of error existed; first, the water training field selection procedure
potentially included pixels from the perimeter of areas of surface
water, wet fields, and bare soil areas. The presence of the wet fields/
bare soil/perimeter pixels among the water training samples resulted in
the presence of two clusters in the non-water part of feature space.
These two clusters resulted in many false detections when wet areas
and bare soil were classified as water. The development of a method
for selecting thresholds which would eliminate most of the pixels
assigned to these two clusters was beyond the scope of this evaluation.
Secondly, another possible source of error was contributed because the
ISOCLS clustering routine, as used in this evaluation, did not define
unimodal clusters and compute meaningful statistics (mainly the covari-
ance matrix; for each class. The classes defined by ISOCLS did not
appear to conform to the normality assumptions and were generally multi-
modal. No conclusion was reached as to the effect of this problem on
classification accuracy.

It is recommended as a follow-on to this exercise that (1) using
representative and verified training samples for water only (i.e. water
training samples that have been verified from photography), a procedure
be defined for identifying water using LARSAA (with and without the aid
of clustering), (2) using representative and verified water and non-
water training samples a procedure be defined for identifying water us-
ing LARSAA (with and without the aid of clustering), (3) using represent-
ative and verified water and non-water training samples, train another

classifier (such as described in Reference 3) which is independent of
certain of the assumptions made in Gaussian maximum likelihood classiti-
cation (such as the normality assumption and the unimodal classes assump-
tion) for the purpose of obtaining an independent assessment of how well
the maximum likelihood classifier is performing in meeting the assumptions
on which the classifier is based, and (4) define a procedure for select-
ing representative training samples for water and non-water which does not
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include pixels from the perimeter of areas of surface water, wet fields
and bare soil areas in the water training sample and does not include
water pixels in the non-water training sample.
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2.0 INTRODUCTION AND BACKGROUND

In this technical report the results from an evaluation of a pro-
cedure for processing of ERTS-1 data to detect and locate surface water
in support of the National Program for the Inspection of Dams (NPID]
will be discussed. The procedure was evaluated on data from a study
area near Lake Somerville in Washington County, Texas. iIn this «uocu-
ment the evaluated data processing procedurc will be outlined and the
results obtained will be discussed. An analysis of the results obtained
at each step of the procedure will then be given. Ccnclusions drawn
from this analysis will be given and recommendations as to the most
appropriate procedure to evaluate next wil. be given.

For the purposes of understanding why this procedure was investi-
gated, background related to the NPID is presented below.

In August 1972, the President signed into law Public Law 92-367 which
authorized the Secretary of the Army to undertake a national program
tor the inspection of dams. The need for dam safety w- aght to
national attention when water impoundments in West Virg ... and South
Dakota gave way, resulting in loss of life and property.

In brief the law directs the Secretary of the Army, acting through
the Chief of Engineers, to carry out a national program for the inspec-
tion of dams. The scope of water impoundment capacity covered by the
law is graphically described in Figure 1. To determine whether a dam
(including the waters impounded by such dam) constitutes a danger to
human life or property, the Secretary will take into consideration the
possibility that the dam might be endangered by overtopping, seepage,
settlement, erosion, sediment, cracking, earth movement, earthquakes,
failure of bulkheads, flashboard, gates on conduits, or other conditions
which exist or which might occur in any area in the vicinity of the dam.

2-1
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The report by the Secretary of the Army to Congress is due on or
before July 1, 1974. The report will include (1) an inventory of all
dams of interest located in the United States, (2) a review of each
inspection made, the recommendations furnished to the governor of the
state in which such dam is located and informaticn as to the implemen-
tation of such recommendations, and (3) recommendations for a compre-
hensive national program for the inspection, and regulation for safety
purposes of dams of the nation, and the respective responsibilities
which should be assumed by the federal, state, and local gcvernments
and by public and private interests.

In December, 1972, thc Texas Water Rights Commissicn (TWRC) sub-
mitted, through the office of the Governor of Texas, a request for
assistance by NASA/JSC/EOD in the development of a procedure or proce-
dures for utilizing data acquired by the Earth Re ources Technology
Satellite (ERTS-1) in detecting and locating water impoundments.

The ERTS-1 satellite was placed in orbit to gather data relative
to the enviromment of the Earth. The ERTS-1 satellite orbits the Earth
in a circular, sun-synchronous, near-polar orbit at an altitude of
approximately 494 nautical miles. The satellite orbits the earth
approximately 14 times each day and views the same scene on the earth
approximately every 18 days.

On board ERTS-1 is a multispectral scanner (MSS) which receives
spectral information in four channels covering the following wavelengths:

Channel Spectral Band Wavelength (micrometers)
2 5 0.6 - 9.7
3 6 0.7 - 0.8 refrective
4 7 0.8 - 1.1) infrared
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The MSS data are recorded and transmitted in digital format to
the NASA data processing facility. Two image products are produced for
each scene, in the form of photographic images and digital images.

The MSS products used for the procedure described in this document
are: (1) 9 1/2" x 9 1/2" system corrected photographic images at a
scale of 1:1,000,000 and, (2) system corrected camputer compatible
tape (CCT) digital images. Each digital image consists of four CCI's,
each CCT covering a strip 25 by 96.3 nautical miles.
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3.0 GENERAL DESCRIPTION OF THE PROCEDURE EVALUATED
3.1 Statement of the Problem

Previous attempts to use the LARSAA maximum likelihood classifier
program to detect surface water using the ERTS-1 data (Reference 2) met
with limited success. The three procedures tested consisted of apply-
ing the maximm likelihood classifier by (a) selecting water only train-
ing fields, clustering the training samples, classifying, and then
thresholding, (b) selecting water training fields and a similar class
training fields, clustering both the water and similar class training
samples, classifying, and then thresholding, and (c) selecting water
only from knowr water bodies larger than 20 surface acres clustering
the training samples, classifying, and then thresholding.

The results obtained from a test of procedure (a) (CLASSIFY maxi-
mm likelihood classification using water only training fields) were
that the correct identification of 81% of areas of surface water of 10
acres or more, and a frequency of false detection of 82.5% were achieved.

Procedure (b) (CLASSIFY maximum likelihood classification using
water plus a similar class training fields) resulted in the correct
identification of 94% of ull areas of surface water of 10 acres or
more and had a frequency of false detection of 66%.

Procedure (c) (CLASSIFY maximum likelihood classification using
only water bodies greater than 20 surface acres as training fields)
correctly identified 69% of all areas of surface water of 10 acres or
more, and had a frequency of false detection of 88%. None of these
results were acceptable according to the established performance
criteria. These established success criteria required a correct
identification of 90% of all areas of surface water of 10 acres or
more, and a frequency of false detection of 10% or less.
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3.2 Procedure Evaluated

As a result of the evaluation of these procedures it was concluded
that the best approach for identifying water would be to (1) select
water training fields, (2) lump the training samples together and
cluster them into unimodal clusters, (3) compute the mean vector and
covariance matrix for each cluster, (4) classify all of the study area
into thes- clusters using the maximum likelihood classifier and then,
(5) threshold out the non-water pixels.

The procedure to be evaluated is similar to one of the procedures
tested previously, but with two important modifications. First, the
clustering routine ISOCLS, was to be set up to cluster the water train-
ing samples into a larger mumber of smaller clusters. The smaller
clusters would help insure that the clusters were unimodal and conform
closer to the nommality assumption. Second, a systematic approach to
selecting class thresholds, as described in Reference 1 was to be used.
The clustering and the threshold selection procedure will be discussed
in greater detail later in this document.

In testing this procedure an important constraint was imposed that
required that all water training fields had to be identified on the
ERTS-1 imagery without the aid of ground truth. Previous exprrience
indicated that water had two important characteristics that might
facilitate identification for training purposes. First, adjacent water
pixels tend to have similar radiance values. Second, most water pixels
have radiance values trom 0 to 6 in channel 4 and any surrounding wet
areas generally have radiance values of 7 to 9 in channel 4.

The water training field selection procedure then had the require-

ment to find these homogeneous areas of low radiance values of at least
8 samples in channel 4 on a LARSAA/PICMON grey map and use them as
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water training fields. To obtain a representative training sample of
the various areas of surface water ard to avoid biasing the water class
statistics in favor of the large water bodies (whose location are gene-
rally known already), the number of training samples taken from any one
area of surface water was restricted to a maximm of 30 samples.

The training samples were next aggregated together and clustered
to obtain the water subclasses inherent in the data. by a proper set-
ting of the clustering program's control parameters, the water training
samples were partitioned into a large number of small clusters to insure
the clusters were unimodal, and thus conform more closely to the estab-
lished normality assumption which is the basis of the Gaussian maximum
likelihood classifier.

Next, all of the study area data was classified, using the maximum
likelihood classifier into the subclasses defined by ISOCLS. The maxi-
mm likelihood classification of water into the various water subclasses
was not helpful in separating water from non-water. Thresholding was
used to eliminate the non-water pixels from each water subclass. The
thresholds effectively defined the discriminant boundary between
water and ncm-water. The assumption made in using this procedure was
that if the water subclasses were sufficiently well separated from the
non-water classes in spectral space, then the thresholds would be an
efiactive means of defining the discriminant boundary between water and
non-water. It should be noted, however, that this is not a maximum
likelihood classification rule. Maximum likelihood classification
implies that a conditional probability density function is available
for the non-water class and each pixel is assigned to the class (i.e.
water or non-water) for which the conditional class probability is
greatest. More precisely, the procedure described above for identify-
ing water is a Gaussian hypothesis testing procedure where a pixel is
assumed to be water if its conditional probability is greater than a
certain confidence level. However, since the CLASSIFY maximum likeli-
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hood classifier was used to evaluate this procedure, the procedure will
be referred to as a maximum likelihood procedure in this document.

A systematic approach to selecting class thresholds was used, and
is described in detail .:n Appendix B. This is essentially the same as
the procedure reported in Reference 1. The procedure will be described
briefly.

In using the LARSAA processor routine DISPLAY, the investigator
can specify the threshold value, T, for each material. In the past
this was done in two ways.

(2) 1In the first proceudre the program DISPLAY was run with
various values of Ti until the classification map (in the form of a
line printer listing) appeared acceptable. This procedure is very
subjective and is difficult to repeat.

(b) The second procedure is based on the accepted fact that if
X (a data value) is distributed according to the multivariate normal
distribution

Pi (X) e‘l/2 Qi (X) (1)

(Zﬂ)N/Z{K |1/2

i

where Q) = X - MK, Tex - M) = 21 2)

then the quantity Qi (X) in equation (2) is a random variable having a
chi-square distribution with N degrees of freedom (where N is the
dimension of the measurement vector X). In equation (2) M, is the mean
vector, Ki is the covariance matrix, and T; is the threshold value for
class i. To the extent that the training data is normally distributed
the investigator can look up in a cumlative chi-square table the thres-
hold value which will reject (i.e., assign to the unclassified category)
no more than a specified percentage of samples. For example, a thres-
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hold setting of T, = 3.0 will reject no more than 5 percent of samples
drawn from a two-dimensional multivariate normal distribution.

In many cases the training data is not normally distributed and
the distribution of Q; must be determined empirically to select the
threshold values. To empirically form an estimate of the density
function of Q;» the number of occurrences of each value of Q; » among
the training samples for class i, are counted. Then the density func-
tions are accumilated (i.e. integrated) with respect to Q; to form the
distribution of Q for each class. Class thresholds T, are then selected
from the empirical distribution of Q; where T, = 1/2Q;.

The specific procedure evaluated will be briefly described next.
A detailed description of this procedure is given in Appendix A.

(1) The appropriate ERTS-1 data tape was selected and registered
to a 1:24,000 scale map of the test area using the program REGSTR.

(2) The PICMON program was used to obtain a grey map of channel 4.
On the grey map counts 0 to 6 were represented by the symbol M, counts
7 to 9 an asterisk (*), and counts 10 to 63 by a blank (no symbol).

(3) From the PICMON map, all areas were located that contained
eight or more contiguously printed M or * symbols, and where at least
25% of the symbols were M symbols. Within these areas, the largest
possible rectangle containing at least 50% M symbols was inscribed. If
the resulting rectangle contained less than eight symbols (including M
and *), the area was deleted from further consideration. If the rectangle
consisted of more than 30 symbols (M's and *'s), the size of the rectangle
was reduced in size, to contain no more than 30 symbols.
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(4) All of the training samples obtained in the step above were
aggregated together and clustered with ISOCLS, using channels 1 and 4
with MAXCLS= 20, NMIN = 16, STDMAX = 1.5, DLMIN = 3.2, and ISTOP = 20.
Statistics were then obtained for each cluster.

(5) The study area near Lake Somerville was classified using
channels 1 and 4 and using the cluster statistics obtained in step 4.

(6) The density and cumulative distribution of the quadratic form
were estimated for each subclass. Threshold values were obtained from
these cumulative distributions of the quadratic form (see Appendix B).

(7) DISPLAY was run with the threshold values obtained above in
step 6.

(8) On the resul:ant display map, all areas representing class 0
(non-water areas of 10 surface acres or more improperly classified as
water), Class III areas (10 or more surface acres), were located and
evaluated against existing ground truth data. The established perfor-
mance criteria for this evaluation is discussed in detail in Appendix
C.

In the following sections, the results of the evaluation of the
procedure just discussed will be documented. The analytical approach
used to obtain these results will then be discussed. Conclusions arriv-
ed at will be presented, and recommendations for further actions will be
presented.
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4.0 RESULTS, CONCLUSIONS, AND RECOMMENDATIONS
4.1 Performance Test Results

The procedure described in section 3.2 was used to classify ERTS-1
data (ERTS-1 Scene: E-1092-16305) acquired on October 23, 1973. Appro-
ximately 500 areas were identified as Class III areas (refer to Appendix
C). Of the 16 Class III areas determined from photographic ground truth
(Mission 220, flown 8 November 1972), all such areas corresponded to
identified Class III areas on the data display map. However, approxi-
mately 484 of the identifications of Class III areas corresponded to
areas where no surface water was found to exist from photointerpretative
"yround truth'". Thus by the definitions of the performance criteria in
Appendix C, the percentage of Class III areas correctly located by this
procedure was

- 16 = o
F33 = TE x 100 = 100%

The frequency of false detection F)3 was, however,

Fos = Tevagg = %0-%

»

Therefore, the chosen procedure failed to meet the criteria of a freq-
uency of false detection of 10% or less, though it exceeded criteria of
the correct identification of Class III areas of 90% or greater.

4.2 Analysis of the Results
Seven procedural steps were taken to develop the analytical results:

The results of each step of the procedure described in the previous sec-

tion are presented here along with an analysis of each step.
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(A) Step 1 - An ERTS-1 data tape (ERTS-1 Scene: E-1092-16305) of
the Lake Somerville Study Area was registered to a scale of 1:24,000
using REGSTR. A pixel dropout rate of approximately 25% was experienced
in registering these data. This dropout rate may result in Class III
areas being classified as Class I or II areas.

(B) Step 2 § 3 - These two steps involved the random selection of
20 water training fields. Only 20 fields were selected because this
number is the naximum number of distinct rectangular areas that ISOCLS

can process at one time,

(C) Step 4 - 'ISOCLS was used to cluster the 248 pixels from the
20 water training fields into 9 clusters, and statistics were defined
using ISOCLS. The scatter plot in Figure 2 was computed for channels
1 and 4. The mean for each cluster is shown on the scatter plot in
Figure 2. Table 1 lists the means vector and covariance matrix com-
puted for each cluster.

On the basis of the scatter plots, no conclusions could be made
as to the adequacy of ISOCLS for defining clusters and cluster statis-
tics that could be used in a Gaussian maximum likelihood classification.
In Figure 2, it can be noted that the cluster means generally fall near
the modes of the data. A possible problem is noted with the covariances
computed for some of the clusters: Clusters 1, 3, 6, 7, 8, and 9 had
negative covariances. Negative covariances are normally not present
in distributions encountered in remotely sensed data. The presence of
negative covariances accentuated the problem of selecting thresholds.
The negative covariances effectively moved the wet areas and vegetation
closer to the means of the water clusters and made thresholding more
difficult.
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TABLE 1 — CLUSTER STATISTICS

MEANS
CLUSTER CH(1) CH(4)
1 43.20 5.05
2 22.05 5.98
3 21.63 3.19
4 24,32 1.96
5 18.64 .84
6 36.50 5.17
7 28.07 7.64
8 32.96 3.19
9 27.28 3.48
COVARIANCE MATRIX FOR CLUSTER 1 COVARIANCE MATRIX FOR CLUSTER 4
10.96 .93
-3.21 3.55 .15 .39
COVARIANCE MATRIX FOR CLUSTER 2 COVARTANCE MATRIX FOR CLUSTER §
.63 30.39
.10 .47 1.26 .45
COVARIANCE MATRIX FOR CLUSTER 3 COVARIANCE MATRIX FOR CLUSTER 6
1.12 4.25
-.01 .37 -2.08 2.64

COVARIANCE MATRIX FOR CLUSTER 7

2.64
-.40 1.23

COVARIANCE MATRIX FOR CLUSTER 8

.85
-.47 .74

COVARIANCE MATRIX FOR CLUSTER 9

1.03
-.03 .55

TOTAL NUMBER OF CLUSTERS = 9
TOTAL NUMBER OF POINTS = 248

CLUSTER SYMBOL POINTS IN CLUSTER
1 1 20
2 2 62
3 3 27
4 4 28
5 5 25
6 6 12
7 7 14
8 8 27
9 9 33
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The most critical problem depicted by Figure 2 is the presence of
a large number of pixels from the perimeter of areas of surface water,
wet areas, and bare soil which are incorrectly included in water train-
ing fields by using the water training samples selection procedure de-
scribed in Step 3 of the procedure.

On reviewing the water training fields within the Lake Somerville
study area, it was found that approximately 40° of the water training
fields selected corresponded to wet *iclds o7 bare soil areas as deter-
mined from photointerpretation ''ground tr The criteria used in
Steps 2 and 3 also include what is belie e some piavls related
to the perimeter of an area of surface wa'... These pixels are parti-
tioned into clusters 2 and 7. This was also evident from the scatter
plot in Figure 2. Many of these wet area/bare soil/perimeter pixels
fall on the non-water side of the Two Channel Lincar Discriminant
Boundary shown in Figure 2. This is an empirically derived discriminant
boundary (see Reference 2) which has been shown to provide acceptable
classification'results (as described in Section 3.0, Appendix C), using
ERTS-1 data for East Texas. Additionally, in subsequent classification
results (see Step 5), these perimeter pixels, wet areas, and bare soil
areas were identiried as belonging to clusters 2 and 7.

(D) Step 5 - The Lake Somerville study area was classified using
channels 1 and 4 an! the cluster statistic obtained in St~p 5. A LARSAA
map tape (MAPTAP) was generated.

(E) Step 6 - The threshold values for each of the 9 subclasses
were selected. An empirical threshold selection procedure (described
in Appendix B), was used to s=lect threshold values. This procedure
provides a me‘hod for obtaining thresholds even when the classification
data does not conform to the normality assumption.
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The procedure described in Appendix B was used to form an empirical
estimate of the density function of Q; (see equation (2) page 2-4 by
counting the number of occurrences of each value of Qi among the train-
ing samples for class i. The density function of Qi for each of the
nine water suvhclasses are shown in Figure 3.

The density functicns of Qi were then summed with respect to Qi
to form the distribution of Qi for each of the nine water subclasses
as shown in Figure 4.

In addition, an empirical estimate of the density function of Qi
was formed by counting the number of occurrences of each value of Qi
among all of the pixels assigned to each of the nine water subclasses
in the Lake Somerville study area. These density function estimates
for the nine water subclasses are shown in Figure 5.

Two conclusions can be drawn from data presented in Figures 3 and
S; First, in Figure 3, tre density and distribution function estimates
of Qi(X) of the training samples for each of the nine water classes
differed significantly from the theoretical chi-square density function
and the theoretical cumulative chi-square distribution function shown
in Figure 6. It can be concluded from the density function estimate
of Qi (Figure 3) for the training samples that in general the water
class training samples are multimodal and do not conform tc the rormality
assumption. The multimodality of the water training samp ¢s could possi-
bly be attributed to the small number of training samples used to form
the estimate of Qi,but in Figure 5 the density functions of Qi of all
of the pixels assigned to each class in the Lake Somerville Study Area
also differ from the theoretical chi-square density for low values of
Q (i.e. for values of Q; less than approximately 3 to 5). Since the
non-water c'asses (i.e. vegetation, wet area, etc.) appear out in the
tails of the density function of Qi (i.e. for Q4 values greater than
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Figure 3. - Empirical estimate of the density function of the quadratic
form Qi for the nine water classes - estimated from the training samples.
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quadratic form Q. for the nine water classes - estimated from the
training samples.
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Figure 6. - The theoretical chi-square density and cumulative distri-
bution for two degrees of freedom.
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approximately 3 to 5), it would not be unexpected if the tails of the
density of Qi differed significantly from the theoretical chi-square
density. From the data shown in Figures 3 and 5, it can be concluded
that the clusters defined by ISCOCLS are generally multimodal and do not
conform to the normality assumption. In addition, a comparison of the
forms of the density functions of Q; for low values of ¢, (i.e. for Q
values less than approximately 3 to 5 in Figures 3 and 5) on a class-
by-class basis indicated that the training samples for each class are
not generally representative of the classes of water found in the Lake
Somerville Study Area (class 5 is an example of a class for which the
training samples do appear to be representative of that class over all
the study area even though it is multimodal). Under these conditions,

the procedure adopted for selecting thresholds was as follows:

(a) Using the estimate of the cumilative distribution function of
Q; obtained from the training samples and shown in Figure 4, determine
what threshold value T; (i.e. T, = 1/2 Qi) is required to retain some
initial percentage of the training samples between 9C% and 100%. These
bounds are imposed by the performance criteria discussed in Appendix C.
An initial value of 95% was selected as the retention rate for testing
this procedure.

(b) Run DISPLAY with the threshold value selected above.

(c) Evaluate the performance of the classifier using the perfor-
mance evaluation criteria described in Appendix C.

(d) If the performance of the classifier is acceptable, the thres-
hold selection procedure is completed. Otherwise go back to (a) above
and pick new thresholds based on the result of the performance evalua-
tion (i.e. if more than 90% of all areas of surface water of 10 acres
or greater in size were correctly detected, with a frequency of false
detection greater than 10%, then lower the training sample retention
rate to a value nearer 90% or vice versa).
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(F) Step 7 - DISPLAYwas run with the threshold values obtained in
step 6 to display the results contained on the MAPTAP obtained in step 5.

(G) Sten 8 - Using the display map it was estimated that there
were approximately 500 class 0 areas (i.e. non-water areas misclassified
as Class III areas). The frequency of false detection was approximately
96.8%. Areas of surface water of 10 acres or more (Class III areas)
were detected and located with an accuracy of 100%. Areas of surface
water from 7 to 9.9 acres (Class II areas) were detected and located
with an accuracy of 20%. All Class II areas were detected but many
were represented by more or less than two line-printer symbols. An

analysis of the display map indicated the major sourre of error was
the misclassification of wet areas, bare soil, and perimeter pixels

as water. These pixels were generally associated with classes 2 or 7.
Figure 7 shows the cutline of a 28.9 acre area of surface water on the
display map classification results. Many of the pixels around the
perimeter ¢l the lake were identified as belonging to class 7. An
analysis of five of the Class III areas indicated that when consider-
ing all of the perimeter pixels (both thresholded and unthresholded),
65% of the perimeter pixels were thresholded, 33% belonged to class 7,
and 2% to class 2. Using the overlays for the perimeter of areas of
surface water which were generated from photography (Mission 220), it
was estimated that within the boundaries of the Class III areas (10
surface acres or more), 90% of the pixels belonged to classes 3, 4, 5,
6, and 9. Nine percent of these pixels belonged to class 7, and 1% to
class 2, Of the pixels that lie on the perimeter of the areas of sur-
face water and were not thresholded, 70% belonged to class 7, 24% to
class 2, and 6% to class 1.

The mislabeling of a perimeter pixel as water does not effect the
accuracy with which Class III areas are detected. However, it does
increase the possibility that a Class II area will be incorrectly
identified as a Class III area. Instead, the major source of error is
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PERIMETER OF SURFACE WATER
4~ AS DETERMINED FROM AERIAL
PHOTOGRAPHY

77997

Figure 7. - Classification results for a 28.9 acre area of surface water.

4-19



the false detections which occur when wet areas and bare soil are mis-
labeled as water. Among the wet areas and bare soil arvas identified
from photography, it was found that in che wet areas 53%, of *he false
detections belonged to class 2, and 47% to class 7, and in the bare

soi) areas, 63% of the false detections belonged to c¢lass 7, and 37%

to class 2. None of the other classes were present in these areas.

One commercial area, which was falseiy identified as water, had ? nixels
from class 6, and 3 pixels from class 7.

As a result of this analysis, it was concluded that classes 2 and
7 were the major sources of false detections. To climinate the false
detections introduced by these two classes, nearly all of the pixels
assigned to these two classes have to be thresholded out. If all of
the pixels assigned to these two classes had been thresholded out
however, one of the Class III areas would not hrve been correctly
identified, two Class III area. would have been risclassified as Class
IT areus, and the remaining 13 Class iIl areas in the Somerville study
area would have been coriectly identified.

Since the preceding discussion has show: that ~lusters 2 and 7
were the results of incorrectly identified trazning {iclds, steps 2
and 3 of the procedure n- :d to be changed, not the thresholds. Thres-

-~

holding all of the pixels assigned to class 2 and 7 implies some a
pricri information about these two classes. This does not appear to
be a reasonable approach to eliminating false detections introduced
by these two classes, so no other threshold values were tried for the
puipose of this study.
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4.3 Conclusions

Several problem areas were noted as a result of the analysis
performed during this evaluation, and warrant comment:

(1) The water training field selection procedure incorrectly
included pixels from the perimeter of areas of surface water, wet fields,
and bare soil areas. The presence of the wet fields/bar~ soil/perimeter
pixels among the water training samples resulted in tr presence of two
clusters (clusters 2 and 7 - see Figure 2} in the non-water part of
feature space. These two clusters resulted in many false detections
whan wet areas and bare soil were classified as water. Within the
sccpe of this effort no practical method was developed for selecting
thresholds which could be used to eliminate most of the pixels assigned
to these two clusters.

(2) Another source of error can be attributed to the fact that
ISOCLS, as used in this evaluation, did not define unir.odal clusters
and compute meaningful statistics (mainly the covariance matrix) for
each class. The classes defined by ISOCLS did not appear to conform
to the normality assumption and were generally multimodal. No conclu-
sion could be reached as to the effect of this statistical problem on
the performance results.

4.4 Recommendations

It is recommended that the following approach be taken in address-
ing the detection of surface water.



(1) Using representative water training data as derived from
photographic ''ground truth'', define new procedures for identifying
water using LARSAA: One procedure using clustering, and one procedure
without. Select thresholds using the procedure described in Reference
1.

(2) Using representative water training samples and representative
non-water training samples (i.c. training samples from wet areas, bare
soil, vegetation, perimeter of areas of surface water, cloud and terrain
shadow, etc.) that have been verified from photography, define a proce-
dure for identifying water using LARSAA: One procedure using cluster-
ing and one procedure without. Select thresholds using the procedure
described in Reference 1.

(3) Using the water and non-water training samples used to test
LARSAA in item (2) above, train another available classifier (Reference
3), that is independent of some of the assumptions made in Gaussian
maximm likelihood classification (such as the nommality assumption
and the unimodal class assumption) for the purpose of obtaining an
independent assessment of how well the maximum likelihood classifier
is performing in meeting its assumptions.

(4) Define a procedure for selecting representative training

samples for water and non-water which do not contain mislabeled train-
ing samples.
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APPENDIX A

A DETAILED DESCRIPTION OF THE EVALUATED COMPUTER-AIDED DATA PROCESSING
PROCEDURE

This procedure involved the following functional steps:

(1) Select the appropriate ERTS-1 System Corrected Camputer
Compatible tap:.

(2) Using program REFORM, convert the tape to a format compatible
with the classifier input (in this case LARSYS II).

(3) Using program PICMON, obtain a grey map of channel 4 (Caution:
use the default mode for symbol selection.)

(4) Select the appr 1iate base maps and select ground control
points. Relate these grot J control points to line and column locatiions
on the channel 4 grey map. (Reference 4)

(5) Using program REGSTR, obtain a geometrically corrected
LARSYS 11 tape.

(6) Using program PICMON, obtain a geometrically corrected grey
map of channel 4. Use the following symbols for the appropriate count

range.
Symbol Counts
m 0 thru 6
* 7 thru 9
blank 10 thru 63
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(7) From the PICMON map obtained in step 6, locate all areas
containing eight or more contiguously printed M or * symbols. If an
area consists of at least 25% M symbols, outline this area and retain
for step 8.

(8) Inscribe the largest possible rectangle, which contains at
least 50% M symbols, within each of the areas located in step 7. If
such a rectangle contains less than eight symbols (including M and *),
delete this area from any further consideration. If the rectangle
consists of more than 30 symbols, reduce the size of the rectangle so
it contains no more than 30 symbols.

The procedure for selecting water training fields as outlined in
steps 7 and 8 above was arbitrary.

(9) Punch LARS - 12 cards : 'r each of the fields selected in
step 8.

(10) Run ISOCLS using channels 1 and 4, with MAXCLAS = 20,
MMIN = 16, STDMAX = 1.5, DIMIN = 3.2, and ISTOP = 20. Obtain a
statistics deck.

(11) Run CLASSIFY, using channels 1 and 4 and the statistics for
the clusters from step 10 and obtain a MAPTAP (map tape).

(12) Obtain the density and cumulative distribution of the quad-
ratic form for each subclass of water, and select threshold values.

(13) Run DISPLY with the MAPTAP obtained in step 11 and the thres-
hold values obtained in step 12 and obtain a line-printer output.

(14) On the display map, the water classes are displayed as inte-
gers and non-water classes are displayed as blanks.
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(15) View the display map to determine the areas on the map which
correspond to the following definitions:

Class I areas - A classification map area containing one ADP sym-
bol will be defined as the ADP identification of a lake of 2 to 6.9
surface acres.

Class II areas - A classification map area containing two contigu-
ous ADP symbols will be defined as the ADP identification of a lake of
7.0 to 9.9 surface acres.

Class III areas - A classification map area containing three or

more contiguous ADP symbols will be defined as the ADP identification
of a lake of 10 or more surface acres.

A-3



APPENDIX B

DETERMINING THE EMPIRICAL DISTRIBUTION
OF THE QUADRATIC FORM FOR USE IN
THRESHOLDING



APPENDIX B

DETERMINING THE EMPIRICAL DISTRIBUTION OF THE QUADRATIC FORM FOR USE IN
THRESHOLDING

An empirical threshold selection procedure described in Reference
1 was used to select threshold values. This procedure provides a method
for obtaining thresholds even when the class data does not confomm to
the normality assumption. This procedure will be briefly described in
the following paragraphs and is essentially the same procedure as des-
cribed in Reference 1.

The LARSAA classification processor, CLASSIFY, classifies measure-
ment vectors using a maximum likelihood scheme based on an assumed
multivariate normal probability density function. In the case of LARSAA,
the classification and the confidence level for each pixel are stored on
the output map tape by the program.

Equation 1 gives the assumed condjtional probability density

function for the multispectral brightness vector XT = (xl, Xps ooy

Xip eoes xn) measured when material of class i fills the scanner field
of view.
T, -1
P, (x) = 1 e “0.5(X - MK, (X - M)
@0 k| O

Here Mi and Ki are the previously computed mean vector and covariance
matrix for the i~ class. Because of the exponential form of equation
1 and because ln(Pi) is a monotonically increasing function of P, it
is convenient to define a new variable Vi according to equation 2.

v, = ln(Pi) (2)
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Equations 3 and 4 result from combining equations 1 and 2

) 1 T, -1
V= -7 - MR T - M) (3)
where
c, = - Yin(zn) - %1:1 ('Kll) (4)

To select the material with the maxim.m likelihood, the following
decision rule is used:

A data vector XT = (xl, Xoy eony X

12 cee xN) is classified as belong-

ing to class i, if,

v, > Vj for all i # j (5)

Equations 3, 4, and 5 are the means by which the N measurements in X
are classified as representing a particular material-type on the basis
of the input mean vectors Mi and the input covariance matrices Ki'

After classification, the display processor, DISPLAY, reads and
displays the results from the map tape (MAPTAP) and summarizes the
results. This program has a provision for assigring samples to the
unclassified category if the confidence level does not exceed a value
dependent on the specified threshold Ti'; this condition is given by
equation 6. If

P, ()< [max(Pi)l e Ti (6)
then X is not assigned to a category, where max(Pi) , given by equation
7, is the maximum value of Pi'

max(P,) = mailx P.(M,) = m?x exp(V;) (7



By combining equations 1, 6, and 7 the condition for assigning a
sample to the unclassified category can be expressed by equation 8.

Q0 = (X - M)TK X - M) > 2T (8)

The value of the quadratic form, Qi’ is often called Mahalanobis'
Distance; it is the weighted (by Ki'l) squared distance in N-space
between a given measurement vector and the mean vector for class i.
According to equation 8, a sample is left unclassified if its Mahalan-
obis' Distance exceeds the value ZTi.

In using the LARSAA program, DISPLAY, the investigator can specify
the threshold value, Ti’ for all materials. In the past this was done
in two ways.

(1) The DISPLAY program was used with various values of Ti to
obtain a classification map (in the form of a line-printer listing)
which was subjectively determined to be adequate. This meant that most
of the training and test fields were correctly classified and yet almost
no classifications were made where the material type was known to differ
from those materials defined by input mean vectors and covariance

matrixes.

(2) It is well known that in theory if P(x) is normal then the
quantity Q; in equation 8 is a random variable having a chi-square
distribution with N degrees of freedom (where N is the dimension of
the measurement vector X). To the extent that the training data is
normally distributed, the investigator can look up in a cumlative chi-
square table the threshold value which will reject (i.e., assign to
the unclassified category) no more than a specified percentage of sam-
ples. TFor example, a threshold setting of Ti = 3.0 will reject no more
than 5 percent of samples drawn from a two-dimensional multivariate
normal distribution.
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Since the training data is not normally distributed in many cases,
the distribution of Qi must be determined empirically to select the
threshold value. To empirically determine the thresholds for the nine
water classes, the LARSAA map tape (MAPTAP) generated in classification
together with a card deck giving ground truth information for the
retangular water training fields were input to the Density and Distri-
bution Function Program to compute the actual distribution of Qi'
Appendix D contains a listing of the Density and Distribution Program.
The LARSAA (MAPTAP) contained the class constants Ci for each class,
and for each pixel:

(1) The integer value for i, the most likely material.

(2) The floating-point variable Vi define by equations 2 and 1
for each of the 439 elements in each of the 1100 lines on thc map tapc.

Figure Bl shows the flow of information involved in computing the
density and distribution functions. For each scan line, 439 values of
i and Vi are read into core. Each element is considered to determine
whether or not ground truth is available (i.e., if it lies within one
of the rectangular fields defined by the Ground Truth deck). If a
pixel lay within one of the rectangular training fields defined by the
Ground Truth deck, the value Vi is used with the class constant (Ci for
that particular material) to determine Qi the Mahalanobis' Distance.
The number of occurrences for each value of Qi for each material are
accunulated to form an estimate of the density function. After all
samples on the input map tape have been tested, the density functions
are accunulated (i.e., summed) with respect to Qi to form the distribut-
ion function for each material. The empirical density and distribution
functions are both printed out as functions of QG for each of the nine
materials,
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Figure B2 shows the flow of information involved in computing the
density and distribution functions when the map tape contains only the
classified water training fields. This modification to the Density and
Distribution Functions Program allowed water training fields which were
outside the Lake Somerville Study Area to be included in the computation
of the density and distributior for the quadratic form Q (X) for each
water class.

In addition, the Figure B2 flow was used to obtain ihe density
function and distribution function for the quadratic fomm Q for each
class using all of the pixels in the Somerville study area which were
assigned to each class. To accomplish this, the whole Lake Somerville
Study Area was treate. as a single water training field in the Figure
B2 flow.
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[ LARS PROGRAM CLASSIFY I

v

OUTPUT MAP TAPE

CONTAINING: CLASo

CONSTANTS, C(I),

1 <1 <9 SEE.EQ. 4.

1 = NUMBER OF MATERIAL
HAVING MAXIMUM

LIKELTHOOD
CARDS WITH GROUND TRUTH V = NATURAL LOG OF
INFORMATION (TRAINING PROBABILITY DENSITY
FIELD DEFINITIONS): ;’U:C}'ION; SEE EQS.
LB BEGINNIN
LE = ENDI:G SgAgcﬁNémE FOR 1 < E<439 ELEMUNTS
EB = BEGINNING ELEMENT IN EACH OF 1 < Lx<
EE = ENDING ELEMENT 1100 SCAN LINES

v

DENSITY AND DISTRIBUTION FUNCTIONS PROGRAM:

b Yy S ——

l CONSIDER SAMPLE (L.E)‘l‘;

IS LB s L € LE AND
EB < E < EE
FOR A PARTICULAR TRAIN-
ING FIELD
{ YES

SET M_ » MATERIAL TYPE I
P OF SAMPLE (L,E)

DETERMINE QUADRATIC FORM
ACCORDING TO EQS. 8 § 3
Q1) = 2[C(M)-V(L,E)]

1Q ~ INTEGER Q(I)

NO

FORM PRGBABILIT. DENSITY
FUNCTION FOR:
MATERIAL = Mp

MAHALANOBIS' DISTANCE = IQ
DF(IQ,MP) = DF(IQ.MP) + 1

R

YES 1 1s (L,) THE LAST SAMPLE“-—-J
y No

]
UPDATE L AND/OR L ‘.——-—4

FORM DISTRIBUTION
FUNCTION FOn:

MATERIAL = M_

L MAHALANOBIS' DISTANCE » IQ
ADF(IQ‘I,MP) - ADF(IQ.MP)

. DF(IQ.MP)

ey

y

LINE-PRINTER LISTING

GIVING

(1} DENSITY FUNCTION FOR
NINE MATERIALS

(2) DISTRIBUTION FUNCTION
FOR NINE MATERIALS

Figure Bl. - Flow diagram for computing density and distribution func-
tions for the general case when training fields lie within the bounds
of the area classified on the MAPTAP.
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l LARS PROGRAM CLASSIFY ]

)

OUTPUT MAP TAPE

CONTAINING:

CLASS CONSTANTS, C(I),

11 <9 SEE EQ. 4.
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HAVING MAXIMUM
L1KELIHOOD

V = NATURAL LOG
PROBABILITY DFNSITY
FUNCTION; SEE £QS.
142

FOR EACH ELEMENT OF EA’ |
TRAINING FIELD

¥

DENSITY AND DISTFIBUTION FUNCTIONS PROGRAM:

CONSIDER THE FOLLOWING )
TRAINING FIELD
L CONSIDER SAMSLY (L,F) I'_‘

SE° M_ = MATERIAL TYPE I
?  OF SAMPIE (L,E)

A CARD SETTING INDICATOR
IND o 1]

DETERMINE QUADRATIC FORM
ACCORDING TO EQS. 8 § 3
Q1) = 2[CM)-V(L,D)]
1Q = INTEGER Q(I)

¥

FORM PROBABILITY DENSITY
FUNCTION FOR:
MATERIAL = M

P
MAHALANOBIS' DISTANCE = IQ
DF(IQ,MP) - DF(IQ,Mp) *1

amd

YES ‘
-—-—-—{ IS (L,E} THE LAST SAMPLEI

MO i

L UPDATE L AND/OR E ]—J

s THIE THE LAST  1__NO
TRAINING FIELD i
{fns

FORM DISTF 9 UION

FUNCT .15

MATERIAL MP
MAHALANOBIS' DISVANCE = IQ
ADF(IQ’I,MP) = ADF(IQ,MP)

* DF(IQM)

\ 4

LINE-PRINTER LISTING

SIVING

(1) DINSITY FUNCTION FOR
NAINE M/TTRIALS

(2) DISTRIBUTION
FUNCTION FOR NINE
MATERIALS

Figure B2. - Flow diagram for computing density and distribution func-
tions when MAPTAP contains only the classified watrr training ficlds.
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APPENDIX C
A DETAILED DESCRIPTION OF THE PERFORMANCE EVALUATION PROCEDURE

The performance of the procedure described in Section 4.1 was
evaluated using photointerpretation data along with the tollowing
evaluation rationale. The procedure is acceptable if it meets or
exceeds the following criteria.

(a) Detect and locate all Class III areas with an accuracy of 90%
or greater.

(b) Frequency of false detections of 10% or less on Class III
areas.

Items (a) ard (b) correspond to FSS and P03 of the matri. below.
The remaining members of this matrix were not evaluated for this proce-
dure.*

®This has been done for other procedures tested. (See Reference 2.)
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PERFORMANCE MATRIX

Assigned Class

True

Class I 9 I

I Fla Fi2 Fi3

1 Fa Fy, Fys

I1I Fzy Fs, Fzs

0 Fo1 Fo2 Fos

Fij = frequency with which ADP identification of class j areas were

actually class i areas (i.e. class j areas mis-identified as
class i areas).

Foj = frequency with which ADP identifications of class j areas were
actually not an area of any class. (Frequency of False Detection)
L. K..
L. = __1 F.. = _]'J..
11 . ij N.
1 )
Li = the total number of correct ADP identifications of class i areas.
Mi = the total number of class i areas in study area.
Nj = the total number class j areas.
l(ij = number of ADP identifications of class j areas which were actua-
11y class 1 areas.
Koj = number of ADP identifications of class j areas which were actua-

11y not an area of any class.
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APPENDIX D

THE DENSITY AND DISTRIBUTION PROGRAM
COMPUTER LISTING

The following program was used to compute the density and distri-
bution of the quadratic form Q(x). It is written in FORTRAN IV and uses
approximately 500 words of core storage for code and approximately 6,000
words for data. To process 20 training fields of water it takes approxi-
mately 30 seconds of CPU time on the Univac 1108 EXEC 2.
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109
101
Ip2
lod
lo4
1os
f0¢
107
tgd

50

42

- N

30

EPRODUCIBILITY OF THR
SRIGINAL PAGE IS POOR

PRUGRAN Cunpurgs OISTHIZUTION vs VISTaANCE FgR THHESHOLD SETY g
DIMENRSON COHS(Z“JnlA(lGOOI-V(IUUOJ-NU(ZHoIDUl. NPtnou),ortgoo;,
loFatigyy, LB(SO).L£(SQJ.NSd(ba).N&Ltsol.NYRY:Zq).latnonan
INTLGER Varsyz,

UIHENSION‘COVNTK(JCOtJO)

FORMAT (41 g,

FOKMAT(20A-215-5A.2IS)

FO«MAT(!MK‘KOIIJI

FORMAT(BF |g,2)

FORMAT LI HG8F 1 g.2)

FORMAT U INMOW G )3

FUMAT (1ngy 1 0c 5,49

FURMAT Um0y 4y

FJRMAY‘!HI:J!X&-IF!O-R)

REAOL]) SLRIAL.NCLSaNOFLDZoVARS£2

REAG(}) wyn

READ(L) oym

REAU(]) (\COVHTX(loJ'oltl.VAhS£2l.J-l.NCLS).(CONS(!).I‘!.NLLS)
REAH(5,100) NLu,th.NTSI.]NQ
"Rlyi(é,IUZ)HCLB-HLB;NLEvﬂysy
anTE(é,lG“l(COﬂS(!I,I=I,NCLS)

lf(l“DaNLoO) G0 Tu s¢

RehniS,101) ¢ (]} NS N ) z TST
wﬁl?ﬁtéf:g?»( tg(fa:tffff:uz :{::«:Ef{, :lzf:x,srf
CONTINUE

DO 22 I=l.NgLs

NTRY([)=]

CONTINUE

M=

ul=9

00 1 lep ucLs

00 2 Je) s 100

NOUL U0

CONTINUE

CONTINUVE

CONTINUE

READ(1} IPTS LINES

IF(!PTS.EQ-U) G0 TO 4

REAp T} L.l:A(x:.K'l.xPIS).(vcxt,K-I.JPTS)

IFUINDWNELG) GO T0 S1

IFCLeL T NLE) 4O To 3

CONTINUE

00 30 Ksl,[PTs

lIe(k)eg

CONTINUE

DO 31 Nsj,NTST

lF(LoLT.LBGN).OR.L.GY.LE(N)) GO To0 34
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31
51

%2

11
12
33

32

53

REPRODUCIBILITY OF THE

ORIGINAL PAGE IS PR

HATPapMAT ()

1Sv=nSh ()
I3C=anrSe (v}

DU 5 K= 1SHhalst
TB(r)=laln)

COnT INUE

CQnT lNUE

CONTINVE

LS 32 Nsl,lPTY
m=lACK)
JFCINDeNEeG) GG TO 52
N=luik)

IFtrehEonN) GO TO 33
COTINUE

Wado U LCURSIM =Yg}y o]0e5

1R=INT(Q)

IFtIuetaTep) GO TO 1
ly=99

GU 10 12

COnNTINVE

FFCIQeblTe%S) GO Ty 12
[w=1G0

cOUWT INUE
NO(H.XQ}-‘-NG(H.IQ)*!
CONTINUE

CONT INUE

IFLINDeNEoD) GO TO 53
IFlCegQetiLe) G0 TO &
Con, "wUE

READ( 1 L.‘IA(K)|K=l|lPTS).(V‘K)OK-l'lPTS'
XF(INUoNtnﬂnkNDnLcEQoQJ GUu 10 3

IF(LeEQel} GO TU 6
[FCINDeNELD) GO TO 51
GO TO 4

CONTINUE

VO 7 M=}, CLS

NT=0

0O B Us14100Q
NaNO{M, J)

NP(JUY=EN

NT=NTeN
COnT INVE

B2FLOAT(NT)

LA=Qe0
DO 9 U= 10D
NaNP(J)
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REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

TEFLOAT(N]}

Calsg

DFtJ)=L

VA30A+D

ODFALJIADA

COUNT INUE
WRITE(G6,108) MenT
.';RITE(O.IOSB ‘!P
AR ITEto 08 ) MoNT
wniTe(6,135) pF
GRITEL6, 10y 1,nT
welTE (6, 4048} DF A
CONTInUE

STep

LNV
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